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NOTATION

0GO calibration constant, 1/€G

Magnetic field strength

Magnetic field strength at the equator

Magnetic field strength at the mirror point

Atmospheric cutoff magnetic field strength

Coefficient of local time dependence (equation 4.4)
Energy

Threshold energy (equation 4.1)

Hardness of exponential spectrum

0G0 arbitrary count rate

Geometric factor or B dependence function (equation 4.3)
Integral flux

Omnidirectional integral flux (equation 4.5)
Time-averaged omnidirectional integral flux (equation 4.6)

Coefficient of omnidirectional flux function (equations 4.5
and 4.6)

McIlwain's magnetic shell parameter

B dependence parameter (equation 4.3)

Equatorial local time averaged flux (equation 4.8)
Number of local time intervals (equation 4.8)

Pitch angle parameter (equation 4.10)

Count rate data normalized to the equator (equation 4.12)
Detector response, Explorer 26 (equation 4.2)
Omnidirectional count rate (equations 4.2 and 4.12)
Detector response, ERS 17 (equation 3.3)

True count rate, ERS 17 (equation 3.3)

Earth radius

Time

Equatorial pitch angle

' Detector efficiency (equation 4.1)
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NOTATION (continued)

Detector average efficiency (equation 4.1)

Angle between spin axis and B vector (equation 4.2)
Detector dead time (equation 3.3)

Local time

Coefficient of local time dependence (equation 4.4)

Local time function (equation 4.4)



1. INTRODUCTION

The AE-4 model of the outer radiation zone electrons has been
presented in an earlier document (Singley and Vette, 1972) along with
numerous graphs and tables displaying this model in a variety of for-
mats. The purpose of the present report is to give the details of the
construction of the AE-4 environment and to show how the model fits the

various data from which it was derived.

In Section 2 a brief morphology of outer zone electrons is given
to illustrate the nature of the phenomena that we are attempting to
model. This is followed by a discussion of the data processing that
was done with the various data received from the experimenters before
incorporating it into the data base from which this model was ultimately
derived. The details of the derivation are given in Section 4, and
several comparisons of the final model with the various experimental

measurements are presented in the final section.

For those persons interested only in the model and its use, the
papers by Singley and Vette (1972) and Teague et al. (1972) will suf-
fice. The present document should be consulted if one is concerned
with the accuracy of the model and its overall agreement with various

magnetospheric experiments.






2. MORPHOLOGY OF OUTER ZONE ELECTRONS

The morphology of outer zone electrons is very complex, and num-
erous physical processes contribute to the dynamics of this spatial
region, Here we outline and illustrate the main features-of the
morphology for users of the AE-4 model environment who are unfamiliar
with the particle measurements and the physical processes. The simpli-
fications used in constructing the model and the departure from physical
reality are described. For more detailed discussions of this region,
see the books edited by McCormac (1966, 1968, 1970), the book by Hess
(1968), and review articles by Vernov et al. (1969), Williams (1971),
and Paulikas (1971).

In a dipole magnetic field, the B, L, ¢ coordinate system we have
chosen would be physically meaningful. If there were only a constant
number of electrons in the outer zone with no loss mechanisms, there
would be no local time variations. The dipole approximation for the
earth's internal magnetic field at distances above 2.5 Rg is reasonable.
However, the outer zone is surrounded by complex regions of plasmas
which strongly determine the behavior of the higher energy particles
that we are modeling. The environment near earth is depicted in
Figure 1. The solar wind protons, which fill the interplanetary medium
to distances well beyond the orbit of the earth, interact with the earth's
magnetic field to form a bow shock and a magnetopause. Within the magne-
tosheath the solar wind protons are diverted around the magnetopause.
There is some leakage of plasma through the polar regions, and it is now
believed that this plasma forms the main source for the plasma sheet
formed in the earth's downwind tail region. The magnetic field lines
originating within the earth generally are contained within the magne-
topause. Owing to surface currents in the magnetopause, many field lines
- are swept back to form the geomagnetic tail.



In the resulting field geometry there are only certain magnetic
lines that can support stable trapping of particles, and the adiabatic
motion is more complex than in a dipole field. Particles that mirror
at different points on a magnetic field line at a given longitude will
actually mirror on different field lines as they drift in longitude.
This effect has been well illustrated by Roederer (1967), who computed
the effect known as shell splitting for a model magnetic field similar
to the real field depicted in Figure 1. The results are shown in
Figures 2 and 3. In Figure 2 the particle mirroring on a common field
line in the noon meridian at the points corresponding to given equa-
torial pitch angles is shown in the midnight meridian plane. The
shell splitting effect begins around 5 Rg and becomes more pronounced
with larger radial distances. The reverse situation is given in Figure
3, where particles start in the midnight meridian and drift around to
noon. As the distance from the earth increases, there are regions
where particles starting at midnight will drift out through the mag-
netopause boundary before reaching the noon meridian. In additionm,
particles mirroring at high latitude in the noon meridian will drift
out in the geomagnetic tail and will be lost from the trapping regionm.
These areas are shown in Figure 4 as quasi-trapping regions. Thus the
region covered with our model environment includes portions where par-
ticles cannot execute drift motion around the earth. A typical satel-
lite pass through the radiation belt and the dayside pseudo-trapping

region is shown in Figure 5.

Very strong sources are continually supplying electrons to the
outer zone. In addition, loss processes remove particles from the
region. The major mechanism for loss seems to be caused by pitch
angle scattering, which produces a diffusion type transport of parti-
cles along the magnetic field lines until they are lost or precipitated
into the atmosphere. The main processes that produce this scattering

are resonant interactions between electromagnetic waves and electrons



in which a momentum transfer results. The resonant condition exists
between the gyrofrequency of the particle and the Doppler shifted
wave frequency. Processes of this type have been discussed by num-
erous authors (Dragt, 1961; Dungey, 1963; Cornwall, 1964, 1965, 1966;
and Kennel and Petschek, 1966). An illustration of the validity of
such a process is shown in Figure 6, which compares the maximum
fluxes observed in the outer zone with a theoretical limit resulting

from calculations of Kennel and Petschek (1966).

In addition to pitch angle scattering, there are transport
mechanisms that result in diffusion of electrons across magnetic field
lines. This diffusion results from fluctuating magnetic or electric
fields that have power spectra at frequencies near the drift frequency
of the particles. There is an extensive literature on radiation belt
diffusion; a number of references can be found in the books by McCormac
(1966, 1968, 1970) and Hess (1968). An observation of outer zone elec-
trons that clearly suggests rapid radial diffusion is given in Figure
7, where an inward motion of energetic electrons is evident. There is
also some coupling between pitch angle diffusion and radial diffusion

in the distorted magnetic field of the magnetosphere.

During periods of magnetic substorms when the shape of the mag-
netic field in the tail is changing, it is now well established that
plasma from the plasma sheet is injected into the radiation belts near
the midnight meridian. Some of these electrons are accelerated to
energies in the 100-keV range as they move inward and begin their drift
around the earth. A schematic of this process has been given by Winckler
(1970) and is shown in Figure 8. Pitch angle diffusion causes many of
these particles to precipitate rapidly into the atmosphere, but large

numbers diffuse radially inward, gaining energy.



The result of these processes is an electron distribution that
is quite chaotic in time. The typical time behavior at given points
in space is shown in Figure 9. The fluxes change two to three orders

of magnitude and subsequently decay following magnetic disturbances.

Two features clearly seen in the outer zone fluxes are not rep-
resented by the AE-4 model. During quiet periods the equatorial pitch
angle distribution observed in the regions where shell splitting
occurs shows the normal peaking at a = 90° on the dayside, but near
the midnight meridian the peak occurs at angles considerably less
than 90°. An example as measured on ATS 1 (Winckler, 1970) is shown
in Figure 10. The results are understood in terms of shell splitting
and the actual radial gradients of the flux distribution near the noon
meridian. Recent results of West et al. (1971) show that the equatorial
pitch angle distribution tends to peak at 30° over the dark hemisphere
of the magnetopause between about 5 to 15 Rg. This effect requires a
B/Bo variation, which depends on local time and energy. As these re-

fined measurements become available, more sophisticated models hopefully

can be constructed.

No attempt has been made to account for the fact that the local
time dependence at low altitude (high B values) is different than in
the near equatorial regions. To illustrate this point, Figure 11
shows the percentage of occurrence of 40-keV electrons above a given
flux threshold that mirror at By > 0.56 gauss. The peak clearly
occurs around 0700 hours rather than around 1100 hours as at the

equator. In addition, the peak around 0100 hours is not seen at the

equator.

In the AE-4 model, some attempt has been made to qualitatively
account for the solar cycle effect. The first evidence of such an
effect was given by Frank and Van Allen (1966), who noticed that the

minimum in the slot region moved outward roughly in accordance with



the decline of the average sunspot number. Vernov et al. (1969} showed
that both the maximum and minimm flux positions varied smoothly with
solar activity. The analysis presented later in Section 4 with the

0GO 1 and OGO 3 data confirms these trends and shows that the variation
is not just a shift in the outer radiation belt but a filling up of the
inner side of this zone. (See Figures 30 and 31.) Since the peak
fluxes are limited by wave-particle interactions, it is understandable
that the average fluxes beyond 5 Rg do not increase, even though the
frequency of substorm occurrence increases and results in injection of
more particles into the belts. However, these particles diffuse into

the regions below 5 Rg, and the average fluxes are increased.






3. DATA PROCESSING

Since there was considerable processing of the experimental data
used in AE-4 after they were obtained from the principal investigators,
this effort is discussed here. The experiments that provided data for
the AE-4 study are listed in Table 1. The experimental data processed
by NSSDC represent the total data from these experiments available in
forms that could be handled appropriately to perform the analysis. The
time coverage of the data spans the period August 1959 to March 1968,
but there are considerable gaps in this period. Actual time coverage
for each satellite is indicated in Figure 12. Smoothed sunspot number
vs time is included as an indication of solar cycle activity. The
data coverages as a function of L, energy, and local time are given in
Figures 13, 14, and 15, respectively. Hopefully, as further data be-
come available to NSSDC, the period of data coverage will be increased

and gaps will be eliminated.

Because the available data were in a variety of forms, they were
reduced to a common form for comparative analysis. Twenty discrete L
values were chosen for individual study so that the variable L did not
have to be dealt with explicitly until after the data were analyzed
with respect to B and ¢. The data from some experiments were available
at discrete L values, whereas other data had to be interpolated to these

values.

The data from the University of Iowa Explorer 12 and Explorer 14
experiments and the Bell Telephone Laboratories Explorer 26 experiment
were available on magnetic tapes in chronological order, with position
and magnetic coordinates available for each data record. These data
were interpolated to discrete L values by performing least squares fits
to rate vs L for short segments (approximately 20 data records) of the

data. Rates were then calculated for the appropriate discrete L values



in the interval of fit. Position and magnetic coordinates and time were
interpolated linearly to the corresponding discrete L values. The fit-
ting technique introduced some smoothing of the data. The Explorer 12
and 14 data had to be corrected for detector dead time using curves
provided by Prof., L. A. Frank. Local time and B/Bo were calculated from
given parameters. After interpolation, the data were sorted by L value

so that each L set could be analyzed separately.

Data from the experiments on Explorer 6, Explorer 18, and ERS 17
were available as rate vs time plots. The position and magnetic co-
ordinates were available on magnetic tapes as a function of time. The
position and magnetic coordinates as well as time were linearly inter-
polated to discrete L values. Detector rates were read from plots at
the interpolated time of discrete L crossings. Local time and B/Bg

were calculated using the equations

B/By = BL3/.311653 (3.1)
6 =t + Lon%;tude (3.2)

where ¢ is local time in hours, t is universal time of day in hours,
and longitude is in degrees east. ERS 17 data were corrected for

dead time using the equation

Ro

t = 1 - TRy (3.3)

R

where Ro is the detector response, Ry is true count rate, and T = 2.5

x 107% sec (Peterson et al., 1968).
The Explorer 18 (IMP 1) data from K. A. Anderson's experiment

posed a peculiar problem. The onboard accumulator for this detector

had a capacity of 217 counts (131,072). The accumulation time was

10



39.36 seconds. While in the radiation belts, the accumulator frequently
filled to capacity and recycled, often more than once, during one ac-
cumulation time. There was no way to keep track of the number of times
the accumulator was filled during the accumulation time. An onboard
divide-by-4 circuit provided a number between 0 and 2!5 (32,728) for

telemeteriné (Anderson et al., 1966).

The counting rates from these data were deduced by analyzing the
time plots made by Anderson and associates at the University of Cali-
fornia, Berkeley. Because Anderson's prime interest was in data outside
the radiation zone where no overflows occurred, the time plots were made
by plotting the telemetered rates without regard to accumulator overflow.
Determination of the counting rates inside the radiation belts required
determination of the number of overflows. As the satellite moved through
the radiation belts, one would expect the counting rate to behave in a
rather orderly fashion. By looking at the plots with continuous data,
it was possible to note when the satellite passed into a region where
the accumulator consistently filled to capacity once, then consistently
filled to capacity twice, and so on, thus permitting certain determina-
tion of the number of overflows. However, when time gaps occurred in
the data, the number of overflows often became ambiguous, thus making

use of the data impossible.

The parameter plotted on the time plots was telemetered rate times
4 (to account for the onboard divide-by-4 circuit) corrected for dead
time. In regions where the accumulator overflowed, the dead-time cor-
rection was invalid. Therefore, the rates read from the plots were
first "uncorrected'" for dead time, the number of accumulator overflows
times 2!7 were added, and the proper dead-time corrections were made

using a dead time of T = 10~* sec (Anderson et al., 1965).

11



Data interpolated to discrete L values were provided by McIlwain
of the University of California at San Diego, from his experiment flown
on Explorer 26. To prepare the data for analysis, the proton background
was subtracted and the data were reformatted; the dead-time corrections

had been made by McIlwain and associates.

The ERS 13 data were available at discrete L values, and thus only

minor reformatting was required to prepare these data for analysis.

The electron spectrometers flown on OGO 1 and OGO 3 by the Univer-
sity of Minnesota (Winckler, Principal Investigator) measured unidirec-
tional electron fluxes in five energy bands. The University of Minnesota
group provided data at discrete L values, including arbitrary rate,*
equatorial pitch angle, local time, and ephemeris. In addition, plots
of arbitrary rate vs L from other time periods were available. Arbi-
trary rate was read from the plots at the desired L values. The
corresponding ephemeris and pitch angle data were read from printouts

and were merged with the rate data.

FArbitrary rate iIs a normalized rate that allows direct comparison of
0GO 1 and OGO 3 data. See Pfitzer (1968), pp. 91-92.

12



4. DATA ANALYSIS

"‘Analysis of Detector Efficiency

Most of the data were measurements from detectors that were ap-
proximately threshold detectors. Detector efficiency under assumed
spectral conditions was analyzed using the method outlined by Vette
(1966) and Vette et al. (1966). The procedure involves evaluation of

the expression

[ elE] (dj/dE) dE
[}

E[E1] = (4.1)
f (dj/dE) dE

Ei

for assumed differential spectra, dj/dE, and various threshold energies,
E;. For this analysis, differential spectra of the form dj/dE =

exp (-E/E¢) were assumed. Plots of € vs E for various E} are presented
for the Explorer 6 Geiger-Mueller counter, ion chamber, and scintilla-
tion counter in Figures 16 to 18. A nominal threshold energy was chosen
for each detector, and thus € was nearly independent of Eq over the
spectral range that might be encountered. This threshold yielded a
single average efficiency value corresponding to a threshold energy

that was used to convert count rate to integral flux with little error

even though the true value of the spectral parameter Eo was unknown,

Efficiency vs energy curves were not available for all the detec-
tors from which data were used. Average efficiencies quoted by experi-
menters were used when the curves were umavailable., The threshold
energies and average efficiencies used for the various detectors are
summarized in Table 1 with the count rate to flux conversion factors,

1/eG. The source is indicated for each case.

13



The Explorer 26 "D" detector was a directional detector perpendi-
cular to the satellite spin axis. During the early lifetime of the
satellite, the spin rate was high enough that the directional accumu-
lation was averaged over several spin periods. Omnidirectional count-

ing rates, R, were estimated using the formula given by McIlwain (1966):

T
R =135 359790 (4.2)

where r is detector response in counts per second and & is the angle
in degrees between the satellite spin axis and the local B vector.
Because there was a slowdown in the Explorer 26 spin rate, data from

the D detector were used only through June 1965,

A detailed analysis of the University of Minnesota OGO 1 and 3
spectrometer efficiency was made by Teague (1970). This instrument
measured electrons over five energy windows. The analysis yielded the
conversion factors and energy windows shown in Table 2 (after Teague,
1970), which are used in the AE-4 study. The energy bands are
designated by the index m.

Radial Profiles, Magnetic Field and Local Time Dependence

Data from each detector were analyzed to obtain the functional
dependence of the flux on the chosen variables. This process was
evolutionary and resulted in the selection of various functional forms
from which a least squares fit to the logarithm of the flux was made
to obtain the time averaged behavior as a function of the chosen vari-
ables. This process will be described in order to justify the final

procedure,
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The first method used was described by Vette and Lucero (1967) in
constructing the AE-3 environment. The counting rate data over a se-
lected time interval were sorted into B/By cells for each discrete L
value. In most cases the number of data points was too small to allow
a two-dimensional sort on B/Bp and ¢ cells simultaneously -- it is im-
portant to get a reasonable number of data points in each cell in order
to obtain a reliable time average for that cell. By ignoring local
time, an average over this variable is, in effect, also performed. To
obtain a crude local time dependence, this same process can be repeated

using a ¢ cell and ignoring B/By.

The B/By dependence of fluxes thus obtained is shown in Figures
19 to 22 for several L values, with the number of data points given
beneath each cell. These figures show that in some instances the
number of data points was too small to obtain a good time average.
Because of the orbit of the satellite, in some cases the number of
points in the equatorial cell was adequate to obtain a good determi-
nation of average flux at the equator. In other cases, the trend
line through the cell averages provided a better estimate of average
equatorial flux. From these analyses, it was observed that the B de-
pendence could be adequately represented by the function

-m[L]
G[B,L] = (B/By) (4.3)

In examining the local time dependence through the cell averaging

technique, it became apparent that a suitable form was

Ty _
} G cos (12 (.¢ ¢j)) 4.4)
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Although both first and second order harmonics were investigated, the
data coverage clearly warranted carrying only the first term of this
series. Furthermore, the ATS 1 data of Paulikas and Blake (1971)

showed that the first harmonic was completely adequate. The most
extensive data set for determining ¢ at any L value was clearly these
ATS 1 data. However, as will be seen later, the coefficient C; ob-
tained for the ATS 1 data was lower than the coefficient for the data
from other satellites. This might be attributed to a solar cycle effect,
but this relationship cannot be completely established on the basis of

the present data.

To account for both B and ¢ dependence, the iterative cell aver-
aging procedure of Vette and Lucero could have been used. However, a
least squares fit using the related functional forms offered a more

direct means of handling the data,.

Because of the large time variation of the flux at any point, a
linearly weighted least squares program will on occasion give a dis-
torted functional form because of a few high flux points. It was
decided to work with the logarithm of the flux in the least squares
analysis because this method would give relatively less weighting to
storm time conditions when the fluxes were elevated. On the other
hand, this procedure gives the time average of the log of the flux,
and for practical purposes it is more desirable to know the time
average of the flux itself. The procedure adopted for low-altitude
satellite data was to fit the logarithm of the counting rate using a

least squares criterion with the following functional form

logio J[>E,B,L,¢] = logioK' - m[L] 10g10(B/Bo)

mog -

- (4.5)
+ C;[E,L] cos (Tﬁ'(¢ - ¢1))
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The Generalized Least Squares with Statistics (CGLSWS) program,
described by Daniels (1966), was used to determine the coefficients K',
m, Ci, and ¢1. To find the correct time averaged value of the flux
for the data sample, the following equation was solved for the param-

eter K:

M M -m Cp cos (——" (¢i - ¢1))
7=) % = k] Gi/B) 10 12 7= .6
i=1 i=1 '

This procedure was performed for each set of data at each discrete L.

Thus the time averaged flux was represented functionally by

_ -m Ci cos (1—; (¢ - ¢1))
T = K(B/Bp) 10

4.7)
The local time variation (the final term in the above equation)
as determined by the fits is plotted for three data sets in Figures
23 to 25. These plots illustrate a low-amplitude random behavior at
low L values. Above L = 5, however, a fairly consistent pattern
emerges. The amplitude (Ci) of the function is greater than the
"noise" at lower L values, and the phase (¢1) varies between 0900
and 1200 hours. The local-time-averaged radial profile at the geo-
magnetic equator was obtained for each sample by integrating the re-

sult over local time and setting B = Bg. Thus,

N n+1l ( T
" Cp cos|sx (¢ - ¢1)
N[E,L] = K [ / 0 12 1)c1<1> (4.8)

. n=1
¢=n

where the integral was performed only over the l-hour local time in-
tervals that contain 1% or more of the data points in the total

sample (N was the total number of such intervals). In other words,
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the functional fits were used to integrate over local time, but those
segments of local time in which there were little or no data available

were not included.

For the Explorer 26 detectors, the number of data points at each
L value was large enough to sort into B/Bg-¢ cells. For these data
sets, the above fits were performed using the logarithm of the cell
averages of counting rates weighted by the standard deviation of the
cell averages of the logarithm of the counting rates. Details of the
analysis of data from Explorer 26 detectors are given by Singley

(1971a, b).

Sample radial profiles of equatorial flux obtained using the
above techniques are shown in Figures 26 to 28. Although each method
produced a different radial profile for a given set of data, the dif-
ferences were within a factor of 2. The data sets represented on the
plots range from 1959 to 1967; in this form, the solar cycle effects
are difficult to see. However, the L position of the outer zone
maxima as observed from these plots demonstrates an outward movement
as solar minimum is approached. This movement is illustrated more
clearly in Figure 29, where the L values of the peak fluxes are plotted

as a function of time.

Solar cycle effects are more clearly demonstrated by comparison
of the spectrometer data from OGO 1 and OGO 3. The OGO 1 data were
taken in 1964 during solar minimum conditions. The 0GO 3 data were
taken in late 1966 and in 1967, when the sunspot number was rising
rapidly to its maximum value for this cycle (see Figure 12). In
addition, the two experiments used identical energy windows and were

intercalibrated, thus aiding comparison of the two data sets.
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Because the spectrometers made unidirectional measurements of
flux over energy windows, the analysis procedures were necessarily
different. Average pitch angle distributions for each energy window

were determined by making least squares fits with the function
logio F[L,¢,a0] = K'[L] + P[L] logio (sin ap) + logio®[¢] (4.9)

to the equatorial pitch angle data taken over several months, In this
function, F is arbitrary rate* and oy is equatorial pitch angle. Nor-
malization of the function to the average of the local time dependence
as in equation 4.8 yields the following representation of the average
pitch angle distribution of arbitrary counting rate:

P[L]
F[L,a0] = K[L] (sin oo) (4.10)

Unidirectional flux was obtained using
j[L,a0] = F[L,a0] (A-AE) (4.11)

where (A*AE) is given for each energy band in Table 2. Omnidirectional
flux for each energy band was obtained by integration. Integral omni-
directional flux at the equator was then calculated for the lower
threshold of each energy window by summing over all higher energy
windows. A more complete description of the analysis of the 0GO data
is given by Singley (1971c). The equatorial radial profiles thus ob-
tained are shown in Figures 30 and 31. These plots show that the slot
region was much deeper under solar minimum conditions than during solar
maximum conditions. The slot region appears to have filled up during
solar maximum, but the profiles at higher L values (L above 5) remained
relatively unchanged. Thus the maxima of the profiles moved inward,

but this was not a shift of the entire curve.

*Arbitrary rate is a normalized count rate that allows direct comparison
of the data from the spectrometers on OGO 1 and OGO 3 (Pfitzer, 1968).
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Statistical Variance

_ Large temporal fluctuations of the electron intensities in the
outer radiation belt made it necessary to study the data statistically
in order to make meaningful predictions about intensity levels. The
logarithm of the flux was found to be approximately normally distributed.
The mean (over time) is presented by the AE-4 model. A model for the
standard deviation of the distribution function was developed and used
in conjunction with the mean to indicate the probability that certain
flux levels would be exceeded. An equivalent interpretation is that
the probability predicts the fraction of the time that the flux will

be in excess of the chosen value.

As in all of the analysis, data from each L set were considered
independently. Using the function that was fit to the data, the local
time and magnetic field dependence were removed from each rate datum,
Ri, thus yielding

Ry
" GIBi/Bo] 0631

P; (4.12)
where G is the functional magnetic field dependence and ¢ is the

functional local time dependence.

The normality of the logarithm of the rate data was illustrated by
comparing the theoretical normal cumulative probability distribution
with the empirical cumulative probability distribution. The empirical
distribution was tabulated by forming the cumulative probability dis-
tribution from the rate frequency distribution. Plots of the theoreti-
cal curve (solid line) and the empirical curve (data points) for the
four sample cases are given in two different presentations in Figures

32 to 37. Similar plots published by Paulikas and Blake (1971) for
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ATS 1 data show similar results. Although the curves do not compare
perfectly, the log normal theoretical curves fit the data closely
enough to be adequate for modeling purposes.
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5. COMPARISON OF THE AE~4 MODEL WITH DATA

The AE-4 model was developed from the results of the data analysis
described in the previous section. Radial profiles of equatorial flux
for various energies were idealized into spectral maps that plotted
smoothly both as a function of energy at constant L and as a function
of L for constant energy for two different epochs (Figures 38 to 41).
The model curves do not fit the data perfectly, but are representative
of all data, especially the OGO data. Comparisons of the model spectral

_curves and the actual data are made in Figures 42 to 59.

The local time model is also a smoothed representation of the re-
sults of the data analyses of all data. The analyses showed that the
maximum amplitudes in local time variation occurred between 0900 and
1200 hours local time for most detectors for most L values (above

L = 5), The parameter ¢ (in equation 4.4) was set to 11 for the model.

The model amplitude function, C[E,L] (this was denoted as C; in
equation 4.4), is a smoothed representation of the amplitudes derived
from the analyses of the various detectors. The model amplitude is
smooth in both the C,E plane and the C,L plane. Systematic differences
as a function of solar cycle made it necessary to use two epochs as in
the model spectrum. This is illustrated in Figure 60, where the
amplitude of the local time variations for the ATS 1 data (1967) is

lower than amplitudes from time periods nearer solar minimum.

The model power law parameter for the magnetic field dependence is
shown in Figures 61 to 64 along with the power law parameters calculated
during the énalyses of the data from various detectors. As can be seen
from these figures, the model parameter is a very simplified curve. The

data do not permit a determination of any energy dependence in this -
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parameter. To provide a low-altitude cutoff for the model, the flux
pair theorem of Roberts (1965) was employed so that the model B de-

pendence is the modified power law

-mfL] mfL] + 1/2
B Be - B
GIB,L = (ET) (iﬁ‘-—ao)

The magnetic field cutoff value, B,, is defined as a function of
L by the curve in Figure 65. This curve represents the B values as a
function of L for which the maximum altitude is less than or equal
to about 200 km. No attempt has been made to have the model fit the
electron precipitation patterns nor is the cutoff dependent on longi-
tude. Because of this lack of longitudinal dependence, the model will
give very unrealistic fluxes at low altitudes in certain regions. When
enough data are available at the National Space Science Data Center,
the low-altitude region can be properly treated. It is interesting
to compare the model with the Injun 3 302 Geiger tube fluxes presented
by Craven (1966). These results are shown in Figure 66. Because the
Injun 3 results spanned a large B range, the comparison was made by
time averaging the results at each value and using a B value in the

model that lay within the range covered by the data.

Assuming a normal distribution for the logarithm of the electron
flux levels over time, as demonstrated in the previous section, a
model of standard deviations of the flux levels predicted by the AE-4
model was developed. The model is given as a smooth tabular function
over E and L, but this is a quantification of a rather subjective pic-
ture. (See Figures 67 and 68 for plots of the tabular model.) The
model reflects the high variances for low-energy electrons at high
L values. The high variances are due to the instabilities in the

pseudo-trapping regions. In the same regions, the variance of the
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higher energy electrons fall off and disappear, thus reflecting the
absence of trapped higher energy electrons in the weak magnetic fields
of that region. The variances remain relatively flat in a band across
the mid-L region, falling off in an orderly fashion at lower L values,
thus indicating more stability just outside the slot region. This
mid-L region is affected by only the largest magnetic storms and thus
is disturbed less frequently than at higher L. Early data indicated
more stability at higher L values, but the variance of Ekplorer 26
and OGO 1 and 3 data remained high down to L ~ 3.5. A composite display
of the standard deviation data as a function of L is given in Figures
69 and 70. Comparisons of the model standard deviation vs energy
with the standard deviation data are presented in Figures 71 to 85.
Because the standard deviation data did not show significant changes

with time, a single standard deviation model was made.
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Table 1,

Detector

Scintillator

Ion Chamber
302 GM

302 GM
213A GM
2138 GM
GM-A (BETA)

SSD

SSD

LEPM Hi Gain
A

D

,

£l
E2
E3

5-Channel
Spectrometer
5-Channel
Spectrometer
302 GM

El

E2

E3

E4

Type of
Measurement

omnidirectional
omnidirectional
omnidirectional
omnidirectional
omnidirectional
directional
directional
scatter omni-
directional
omnidirectional
omnidirectional
omnidirectional
omnidirectional
directional
averaged over
spin
scatter omni-
directional
scatter omni-
directional
scatter omni-
directional
directional

directional

omnidirectional
omnidirectional
omnidirectional
omnidirectional
omnidirectional

Time
Coverage

8/59-9/59
8/59-10/59

8/7/59-8/25/59

8/61-12/61
10/62-8/63
10/62-8/63
10/62-8/63
12/63-5/64

7/64-11/64
7/65-10/65
7/65-10/65
1/65-12/65
1/65-6/65

1/65-5/67
1/65-5/67
1/65-5/67
9/64-6/67
6/66-12/67
1/63-7/63
12/66-2/68
12/66-2/68

12/66-2/68
12/66-2/68

—_——— iy O

NN

- W

Nominal
Er
(MeV)

o,

.5
.5
Table 2
See Table 2

1.9
.300
450

.05
1.9

Experimental Data Used to Make Electron Model AE-4

Nominal
1/€6

E3
E4

~s N
oo

8 E3
7 E4
E3

prp—
N O Oy~ o
TNy

300
174

300
2.5 E4
4.19 E3
3.29 E3
3.29 E3

Source of ¢, G Data

Rosen {1965)

Arnoldy et al. (1962)
Arnoldy et al. (1962)
Vette and Lucero (1967)
Vette and Lucero (1967)
0'Brien et al. (1962)
0'Brien et al. (1962)
Anderson et al. (1965)

Vette, Private Communication
Peterson et al. (1968)
Peterson et al. (1968)
McIlwain (1963)

McIlwain (1967)

Williams et al. (1968)
Private Calculations
Private Calculations
Teague (1970)

Teague (1970)

Vette and Lucero (1967)
Paulikas and Blake (1971)
Paulikas and Blake (1971)

Paulikas and Blake (1971)
Paulikas and Blake (1971)



Table 2. Summary of Energy Bands and Efficiency
Characteristics for the 0G0 1 and OGO 3 Spectrometers

Ener
Bangy Am Em Em+1 AEm AmAEm
(m) (cm?-sec-ster-keV)™* (keV) (kev) (keV) (cm?-sec-ster)™!
1 3.691 36 133 97 358
2 6.23 133 292 159 991
3 6.10 292 690 398 2428
4 6.66 690 1970 1280 8525
5* 2.16 x 10" 1970 o Assumed - 2.16 x 10"

*Channel 5 was effect1ve1y a threshold detector with threshold 1970
%$g7o)The A value given is 1/eG; ¢ and G were obtained from Teague
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Figure 84. Comparison of AE-4 Model Standard Deviation with Standard Deviation from Data Sets,

L = 10.0




1301440 ONILNINYE LININNMIAOD §N &

PLE/POE-SEL-TLEL

LT1

7 LOG FLUX

Figure 85.

L=11.0

@ EXPLORER 14
@ IMP1

@ ERS 17
| | i1
1 2 3
E (MeV)

Comparison of AE-4 Model Standard Deviation with Standard Deviation from Data Sets,

L=11.0




